
Week 14 - Friday

 What did we talk about last time?
 Review up to Exam 2
 Java GUIs

▪ JOptionPane
▪ JFrame
▪ Widgets
▪ Layout managers
▪ Action listeners

 Recursion
 Files

▪ Text I/O
▪ Binary I/O
▪ Serialization

 Networking

 Final exam will be held virtually:
 Monday, April 27, 2020
 10:15 a.m. to 12:15 p.m.

 There will be multiple choice, short answer, and programming
questions

 I recommend that you use an editor like Notepad++ to write
your answers, since Blackboard doesn't play nice with tabs

 I don't recommend that you use Eclipse, since the syntax
highlighting features will make you doubt yourself and try to
get things perfect when getting them done is more important

 A linked list is one of the simplest kinds of dynamic data
structures

 You can imagine a linked list as a train
 Each node in the linked list has some cargo, and it can point at

the next item in the list
 The last item points at null so that you know that the train has

ended
 You can add and remove nodes as much as you want, and

nothing needs to be resized

 The most common library implementation of a linked list is a
doubly linked list

 Node consists of data, a next pointer, and a previous pointer
 Because we know the next and the previous, we can move

forwards or backwards in the list
Xhead

23 47 58

X tail

 Simple definition for a doubly-linked list that holds an unlimited number of
String values:
public class LinkedList {

private static class Node {
public String data;
public Node next;
public Node previous;

}

private Node head = null
private Node tail = null;
private int size = 0;
…

}

 When you write a container class (like a list), you have to write
it to contain something
 A list of String values
 A list of Wombat values
 A list of int values

 What if we could design a list class and not specify what its
contents are?

 Someone has to say what it contains only when they make a
particular list

 That's the idea behind generics in Java
 The name is because it lets you make a generic list instead of a

specific kind of list
 You can make classes (often, but not always, containers)
 These classes have one or more type parameters
 The type parameters are like variables that hold type

information
 When you make such an object, you have to say what its types

are

 Influenced by templates in C++, Java puts type parameters in
angle brackets (<>)

 For example, we can declare the following LinkedList
objects defined in the Java Collections Framework

 For technical reasons, you can only use reference types for
type parameters, never primitive types

LinkedList<String> words = new LinkedList<String>();
LinkedList<Wombat> zoo = new LinkedList<Wombat>();
LinkedList<Integer> numbers = new LinkedList<Integer>();

 If you use the wrapper class as the type parameter, Java will automatically
convert primitive types to and from the wrapper class

 This is called boxing and unboxing
 For example:

 For the most part, it magically works
 However, storing primitive types is less efficient

LinkedList<Integer> numbers = new LinkedList<>();
numbers.add(7);
numbers.add(15);
int value = numbers.get(0); // Holds 7

 When declaring a generic class, put angle brackets and the type
parameter after the name of the class

 The type parameter is often called T, standing for type
 Consider a simple generic class that holds a pair of…anything

public class Pair<T> {
private T x;
private T y;
public Pair(T x, T y) {

this.x = x;
this.y = y;

}
}

 Instead of String values, we can write a doubly linked list class that holds
anything
public class LinkedList<T> {

private static class Node<T> {
public T data;
public Node<T> next;
public Node<T> previous;

}

private Node<T> head = null
private Node<T> tail = null;
private int size = 0;
…

}

 Collection Parent interface of most containers
 Iterable A collection that can be iterated over
 List A collection that contains items in an order
 Queue A collection that supports FIFO operations
 Set A collection of unordered objects
 Map A collection of (key, value) pairs

 LinkedList List implementation using a linked list
 ArrayList List implementation using a dynamic array
 Stack FILO data structure
 Vector Like an ArrayList, but thread-safe
 HashSet Set implementation using a hash table
 TreeSet Set implementation using binary search trees
 HashMap Map implementation using a hash table
 TreeMap Map implementation using binary search

trees

 Collections
 sort()
 max()
 min()
 replaceAll()
 reverse()

 Arrays
 binarySearch()
 sort()

 The List<E> interface is one of the biggest you'll ever see
 Here are a few important methods in it

Returns Method Description

boolean add(E element) Adds element to the end of the list

void add(int index, E element) Adds element before index

boolean addAll(Collection<? extends E> collection) Adds everything from collection to this list

void clear() Removes everything from this list

boolean contains(Object object) Returns true if this list contains object

E get(int index) Return the element at index

int indexOf(Object object) Returns the first index where something that
equals object can be found

boolean isEmpty() Returns true if the list is empty

boolean remove(int index) Remove the element at index

E set(int index, E element) Set the item at location index to element

int size() Returns the size of the list

 As you will learn (or have learned) in COMP 2100,
ArrayList uses an array inside to store datay
 When you need more space, it makes a new array and copies all the

old stuff into the new array
 LinkedList uses a (wait for it) linked list to store the data
 In principle, LinkedList is faster for lots of unpredictable

adds and removals
 Especially adds and removals at the beginning of the list

 In practice, ArrayList is almost always faster
 Modern machines are really good at ripping through arrays

 Maps are a kind of data structure that holds a (key, value) pair
 For example, a map might use social security numbers as keys and

have Person objects as the value
 In a map, the keys must be unique, but the values could be

repeated
 Both Java and C++ use the name map for the symbol table classes

in their standard libraries
 Python calls it a dictionary (and supports it in the language, not

just in libraries)
 Maps are also called symbol tables

 Maps are for you can imagine storing as
data with two columns, a key and a value

 In this way you can look up the weight of
anyone

 However, the keys must be unique
 Ahmad and Carmen might weigh the same, but

Ahmad cannot weight two different values
 There are multimaps in which a single key

can be mapped to multiple values
 But they are used much less often
 All you really need is a map whose values are

lists

Name
(Key)

Weight
(Value)

Ahmad 210

Bai Li 145

Carmen 105

Deepak 175

Erica 205

 The Java interface for maps is, unsurprisingly, Map<K,V>
 K is the type of the key
 V is the type of the value
 Yes, it's a container with two generic types

 Any Java class that implements this interface can do the
important things that you need for a map
 get(Object key)
 containsKey(Object key)
 put(K key, V value)

 Because the Java gods love us, they provided two main
implementations of the Map interface

 HashMap<K,V>
 Hash table implementation
 To be useful, type Kmust have a meaningful hashCode()method

 TreeMap<K,V>
 Balanced binary search tree implementation
 To work, type Kmust implement the compareTo()method
 Or you can supply a comparator when you create the TreeMap

 Java also provides an interface for sets
 A set is like a map without values (only keys)
 All we care about is storing an unordered collection of things
 The Java interface for sets is Set<E>
 E is the type of objects being stored

 Any Java class that implements this interface can do the
important things that you need for a set
 add(E element)
 contains(Object object)

 As with maps, there are two main implementations of the
Set interface

 HashSet<E>
 Hash table implementation
 To be useful, type Emust have a meaningful hashCode()method

 TreeSet<E>
 Balanced binary search tree implementation
 To work, type Emust implement the compareTo()method
 Or you can supply a comparator when you create the TreeSet

 Every language has its own libraries for sorting
 Let's start with sorting arrays
 It would be nice if every array just had a sort()method
 But it doesn't!

 Instead, there's an Arrays (note the s) class with a number of
useful static methods (with versions for arrays of every primitive
type as well as Object):
 sort()
 binarySearch()
 toString()

 To use it, import java.util.Arrays

 Calling Arrays.sort() will sort arrays of byte, char, short, int, long, float,
double, and String, always in ascending order

 Calling Arrays.toString() also produces a nice printable version of an array

// Obviously, data could also be input from the user or file
int[] numbers = {98, 50, 25, 30, 10, 56, 79, 86, 18, 92};
Arrays.sort(numbers);
// Output: [10, 18, 25, 30, 50, 56, 79, 86, 92, 98]
System.out.println(Arrays.toString(numbers));

String[] words = {"The", "quick", "brown", "fox", "jumps", "over",
"the", "lazy", "dog"};
Arrays.sort(words);
// Output: [The, brown, dog, fox, jumps, lazy, over, quick, the]
// Don't forget that uppercase letters have lower ASCII values
System.out.println(Arrays.toString(words));

 If you're sorting a collection (meaning List, LinkedList,
ArrayList, Vector, etc.), you can use Collections.sort()

 When a collection has its own sort()method (as ArrayList does),
use that, since it's tuned for performance on that collection

Scanner file = new Scanner(new File(fileName));
LinkedList<String> words = new LinkedList<>();
while(file.hasNext())

words.add(file.next());
file.close();
// Print out all the words in the file, sorted
Collections.sort(words);
for(String word : words)

System.out.println(word);

 If you want to sort an array or a list of some object, it must implement the
Comparable<T> interface, where T is usually the type of the object
itself

 The Comparable<T> interface has one method in it:

 An object that implements Comparable<T> will return:
 A negative number if it comes before other in order
 A positive number if it comes after other in order
 Zero if it is equivalent to other

 It's usually not important what the values are, just whether they are
positive or negative

int compareTo(T other);

 Wombat's are prized for their cuddliness, so we want to compare them by how fat they are
 By subtracting the other Wombat object's weight from our own, we get negative if we're

smaller, positive if we're bigger, and zero if we weigh the same

public class Wombat implements Comparable<Wombat> {
private int weight;
private String name;
public Wombat(String name, int weight) {

this.name = name;
this.weight = weight;

}
public int compareTo(Wombat other) {

return weight - other.weight;
}
public int String getName() {

return name;
}

}

 What if the objects you're working with don't implement the
Comparable interface?

 Or if you want to sort them in some other way?
 You can supply a custom Comparator<T> object to the
sort()methods that will say how they should be compared

 The Comparator<T> interface contains one method you have
to implement:

 It should return negative if a comes before b, positive if a comes
after b, and zero if a and b are equivalent

int compare(T a, T, b);

 Here's a simple class for Planet, a class they didn't expect to sort

public class Planet {
private String name;
private double radius;
public Planet(String name, double radius) {

this.name = name;
this.radius = radius;

}
public double getRadius() {

return radius;
}
public String getName() {

return name;
}

}

 Since the Planet class doesn't implement Comparable, we have to make a
Comparator to pass to the sort() method

 We have to make an anonymous inner Comparable class, using the
Double.compare() method to help use order by radius

List<Planet> planets = new ArrayList<>();

planets.add(new Planet("Venus", 6051.8));
planets.add(new Planet("Earth", 6371.0));
planets.add(new Planet("Mars", 3389.5));
Comparator<Planet> comparator = new Comparator<Planet>() {

int compare(Planet a, Planet b) {
return Double.compare(a.getRadius(), b.getRadius());

}
};
Collections.sort(planets, comparator);
// Order: Mars, Venus, Earth

 Using Java 8 style, we could also create the Comparator object
with the quicker (but slightly more confusing) -> syntax

List<Planet> planets = new ArrayList<>();

planets.add(new Planet("Venus", 6051.8));
planets.add(new Planet("Earth", 6371.0));
planets.add(new Planet("Mars", 3389.5));

// Order: Mars, Venus, Earth
Collections.sort(planets, (a, b) ->
Double.compare(a.getRadius(), b.getRadius()));

 The Unified Modeling Language (UML) is an international
standard for graphical models of software systems

 A few useful kinds of diagrams:
 Activity diagrams
 Use case diagrams
 Sequence diagrams
 State diagrams

 Class diagrams are important enough that we'll talk about
them in greater detail

 Activity diagrams show the
workflow of actions that a
system takes

 Formally:
 Rounded rectangles represent

actions
 Diamonds represent decisions
 Bars represent starting or ending

concurrent activities
 A black circle represents the start
 An encircled black circle represents

the end

 Use case diagrams show
relationships between users of a
system and different use cases
where the user is involved

 Example from Wikipedia:

https://commons.wikimedia.org/wiki/File:Use_case_restaurant_model.svg

 Sequence diagrams show system
object interactions over time

 These messages are visualized as
arrows
 Solid arrow heads are synchronous

messages
 Open arrow heads are

asynchronous messages
 Dashed lines represent replies

 Example from Wikipedia:

https://commons.wikimedia.org/wiki/File:CheckEmail.svg

 State diagrams are the
UML generalization of
finite state automata
from discrete math

 They describe a series
of states that a system
can be in and how
transitions between
those states happen

 Class diagrams show many kinds of relationships
 The classes being described often (but not always)

map to classes in object-oriented languages
 The following symbols are used to mark class

members:
 + Public
 - Private
 # Protected
 / Derived
 ~ Package
 * Random

 Example from Wikipedia:

https://commons.wikimedia.org/wiki/File:KP-UML-Generalization-20060325.svg

 There are two almost opposing purposes for
testing

 Showing that software meets its
requirements
 Validation testing
 Looking for good outputs

 Finding inputs where software doesn't work
 Defect testing
 Looking for bad outputs

 When a project is due, students often
confuse the two
 Trying to convince themselves that the code is

fine instead of looking for problems

 Commercial software systems often go through three stages of testing
 Development testing
 Look for bugs during development
 Designers and programmers do the testing

 Release testing
 Test a complete version of the code to see if it meets requirements
 A separate testing team does the testing

 User testing
 Users test the system in a real environment
 Acceptance testing is a special kind of user testing to decide whether or not the

product should be accepted or sent back

 Development testing is the idea of testing you're most
familiar with
 Testing the software as it's being developed
 Development testing is focused on defect testing
 Debugging happens alongside development testing

 Three stages of development testing:
 Unit testing: testing individual classes or methods
 Component testing: testing components made from several objects
 System testing: testing the system as a whole

 Unit testing focuses on very small components
 Methods or functions
 Objects

 Unit tests try many different inputs for the methods or objects
to make sure that the outputs match

 Broken method to determine if a year is a leap year:

 Tests:
 isLeapYear(2016)→ true (correct)
 isLeapYear(2018)→ false (correct)
 isLeapYear(1900)→ false (correct)
 isLeapYear(2000)→ false (incorrect)

public static boolean isLeapYear(int year) {
return year % 4 == 0 && year % 100 != 0;

}

 One philosophy of testing is making black box tests
 A black box test takes some input A and knows that the

output is supposed to be B
 It assumes nothing about the internals of the program, only

the specification
 To write black box tests, you come up with a set of input you

think covers lots of cases and you run it and see if it works
 In the real world, black box testing can easily be done by a

team that did not work on the original development

 White box testing is the opposite of black box testing
 Sometimes white box testing is called "clear box testing"

 In white box testing, you can use your knowledge of how the
code works to generate tests

 Are there lots of if statements?
 Write tests that go through all possible branches

 There are white box testing tools that can help you generate
tests to exercise all branches

 Which is better, white box or black box testing?

 Beyond unit testing is component testing
 Components are made up of several independent units
 The errors are likely to be from interactions between the units
 Hopefully, the individual units have already been unit tested

 The interfaces between the units have to be tested
 Parameter interfaces in method calls
 Shared memory interfaces
 Procedural interfaces in which an object implements a set of

procedures
 Message passing interfaces

 System testing is when we integrate components together in
a version of the whole system

 Though similar to component testing, there are differences:
 Older reusable components and commercial components might be

integrated with new components
 Components developed by different teams might be integrated for

the first time
 Sometimes, you only see certain behavior when you get

everything together
 Try testing all the use cases you expect the system to see

 JUnit is a popular framework for automating the unit testing
of Java code

 JUnit is built into Eclipse and many other IDEs
 It is possible to run JUnit from the command line after

downloading appropriate libraries
 JUnit is one of many xUnit frameworks designed to automate

unit testing for many languages
 You are required to make JUnit tests for Project 4
 JUnit 5 is the latest version of JUnit, and there are small

differences from previous versions

 For each set of tests, create a class
 Code that must be done ahead of every test has the @BeforeEach annotation
 Each method that does a test has the @Test annotation
import org.junit.jupiter.api.*;
public class Testing {

private String creature;

@BeforeEach
public void setUp() {

creature = "Wombat";
}

@Test
public void testWombat() {

Assertions.assertEquals("Wombat", creature, "Wombat failure");
}

}

 When you run a test, you expect to get a certain output
 You should assert that this output is what it should be
 JUnit 5 has a class called Assertions that has a number of static methods used to assert

that different things are what they should be
 Running JUnit takes care of turning assertions on

 The most common is assertEquals(), which takes the expected value, the actual
value, and a message to report if they aren't equal:
 assertEquals(int expected, int actual, String message)
 assertEquals(char expected, char actual, String message)
 assertEquals(double expected, double actual, double delta, String
message)

 assertEquals(Object expected, Object actual, String message)
 Another useful method in Assertions:
 assertTrue(boolean condition, String message)

 We know that the substring() method on String
objects works, but what if we wanted to test it?

import org.junit.jupiter.api.*;

public class StringTest {

@Test
public void testSubstring() {

String string = "dysfunctional";
String substring = string.substring(3,6);
Assertions.assertEquals("fun", substring, "Substring failure!");

}
}

 Test driven development (TDD) is an approach to
development where testing and coding are interleaved

 Never move to the next increment of code until the current
one passes its tests

 The key idea of TDD is that you write tests for the code before
you write the code

 By making the test first, you really understand what you're
trying to implement

 Your testing has better code coverage, testing every segment
of code at least once

 Regression testing happens naturally
 Debugging should be easier since you know where the

problem likely is (the new code added)
 The tests are a form of documentation, showing what the

code should and shouldn't do

 Write a doubly-linked list class containing String values that
can add to and remove from the front and the back

 Convert that doubly-linked list class to a generic class holding
values of type T

 Write a Tuna class that implements Comparable<Tuna>,
based on a weight member variable

 Write a custom comparator to sort a list of double values in
descending order (largest values first)

 What's the difference between black box testing and white
box testing?

 There is no next time!

 Finish Project 4
 Due tonight by midnight!

 Review chapters 7, 10-12, and , 15-21 and notes
 Look over labs, quizzes, and projects to prepare
 Final Exam:
 Monday, April 27, 2020
 10:15 a.m. to 12:15 p.m.

	COMP 2000
	Last time
	Questions?
	Project 4
	Final exam
	Review after Exam 2
	Dynamic Data Structures
	Linked list
	Doubly linked list
	Definition
	Containers
	Generics
	Angle brackets
	Boxing and unboxing
	Type parameter syntax
	Definition
	Java Collections Framework
	Container interfaces
	Container classes
	Tools
	List<E> methods
	ArrayList vs. LinkedList
	Maps
	Concrete example
	JCF Map
	JCF implementation
	JCF Set
	JCF implementation
	Sorting
	Sorting arrays
	Array sorting example
	Sorting other collections
	Comparable<T>
	Wombat example
	What if things weren't designed to be sorted?
	Planet example
	Sorting Planet objects by radius
	Sorting Planet objects in Java 8
	UML
	UML
	Activity diagrams
	Use case diagrams
	Sequence diagrams
	State diagrams
	Class diagrams
	Testing
	Purposes of testing
	Stages of testing
	Development testing
	Unit testing
	Unit test example
	Black box testing
	White box testing
	Component testing
	System testing
	JUnit
	JUnit
	JUnit classes
	Assertions in JUnit tests
	Assertion example
	Test driven development
	Benefits of TDD
	Practice questions
	Upcoming
	Next time…
	Reminders

